有您的持续关注
我们会做得更好

斐波那契详解 第二节 斐波那契数列的发明者



斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,逝于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

人物背景

家庭

列奥纳多的父亲Guilielmo(威廉),外号Bonacci(意即「好、自然」或「简单」)。因此列奥纳多就得到了外号斐波那契 (Fibonacci,意即filius Bonacci,Bonacci之子)。威廉是商人,在北非一带工作(今阿尔及利亚Bejaia),当时仍是小伙子的列奥纳多已经开始协助父亲工作。于是他就学会了阿拉伯数字。

学习

有感使用阿拉伯数字比罗马数字更有效,列奥纳多前往地中海一带向当时著名的阿拉伯数学家学习,约于1200年回国。1202年,27岁的他将其所学写进计算之书(Liber Abaci)。 这本书通过在记帐、重量计算、利息、汇率和其他的应用,显示了新的数字系统的实用价值。这本书大大影响了欧洲人的思想,可是在三世纪后印制术发明之前,十 进制数字并不流行。(例子:1482年,Ptolemaeus世界地图 ,Lienhart Holle在Ulm印制)

成就

列奥纳多曾成为热爱数学和科学的腓特烈二世 (神圣罗马帝国)的坐上客。欧 洲数学在希腊文明衰落之后长期处于停滞状态,直到12世纪才有复苏的迹象。这种复苏开始是受了翻译、传播希腊、阿拉伯著作的刺激。对希腊与东方古典数学成 就的发掘、探讨,最终导致了文艺复兴时期(15~16世纪)欧洲数学的高涨。文艺复兴的前哨意大利,由于其特殊地理位置与贸易联系而成为东西方文化的熔 炉。意大利学者早在12~13世纪就开始翻译、介绍希腊与阿拉伯的数学文献。欧洲,黑暗时代以后第一位有影响的数学家斐波那契(约1175~1240), 其拉丁文代表著作《算经》、《几何实践》等也是根据阿拉伯文与希腊文材料编译而成的,斐波那契,即比萨的列昂纳多(Leonardo of Pisa),早年随父在北非从师阿拉伯人习算,后又游历地中海沿岸诸国,回意大利后即写成《算经》(Liber Abac·1202,亦译作《算盘书》)。《算经》最大的功绩是系统介绍印度记数法,影响并改变了欧洲数学的面貌。现传《算经》是1228年的修订版,其 中还引进了著名的”斐波那契数列”。 《几何实践》(Practica Geometriae, 1220)则着重叙述希腊几何与三角术。斐波那契其他数学著作还有《平方数书VLiberQuadratorum, 1225)、《花朵》(Flos, 1225)等,前者专论二次丢番图方程,后者内容多为菲德里克(Frederick)二世宫廷数学竞赛问题,其中包含一个三次方程/十2×2十10x~- 20求解,斐波那契论证其根不能用尺规作出(即不可能是欧几里得的无理量),他还未加说明地给出了该方程的近似解(J一1.36880810785)。微积分的创立与解析几何的发明一起,标志着文艺复兴后欧洲近代数学的兴起。微积分的思想根源部分(尤其是积分学)可追溯到古 代希腊、中国和印度人的著作。在牛顿和莱布尼茨最终制定微积分以前,又经过了近一个世纪的酝酿。在这个酝酿时期对微积分有直接贡献的先驱者包括开普勒、卡 瓦列里、费马、笛卡)U、沃利斯和巴罗(1.Barrow,1630~1677)等一大批数学家。

人物轶事

数列

斐波那契在《算盘书》中提出了一个有趣的兔子问题:

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?斐波那契

我们不妨拿新出生的一对小兔子分析一下:

第一个月小兔子没有繁殖能力,所以还是一对;

两个月后,生下一对小兔总数共有两对;

三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;

……

依次类推可以列出下表:

经过月数 0 1 2 3 4 5 6 7 8 9 10 11 12
总体对数 0 1 1 2 3 5 8 13 21 34 55 89 144

表中数字1,1,2,3,5,8—构成了一个序列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在《算盘书》中提出的,这个级数的通项公式,除了具有an+2=an+an+1的性质外,还可以证明通项公式为:an=1/√5 [(1/2+√5/2)^ n-(1/2-√5/2)^n](n=1,2,3…..)(√5表示根号 5)

这个通项公式中虽然所有的an都是正整数,可是它们却是由一

些无理数表示出来的。

即在较高的序列,两个连续的”斐波纳契数”的序列相互分割

将接近黄金比例(1.618:1或1:0.618)。

例如:233/144,987/610、、、、

斐波那契数列还有两个有趣的性质

⒈斐波那契数列中任一项的平方数都等于
兔子问题兔子问题
跟它相邻的前后两项的乘积加1或减1;

⒉任取相邻的四个斐波那契数,中间两数之积(内积)与两边两数之积(外积)相差1斐波那契

质数

斐波那契质数由斐波那契序列中的质数组成,是整数质数序列.

第一组质数序列是:2,3,5,13,89,233,1597,28657,514229,433494437,2971215073,….

重要作品

Liber Abaci(算盘全书,1202年)。

Practica Geometriae(1220年),几何学和三角学概论

Flos(1225年),Johannes of Palermo提出的问题的答案

Liber quadratorum,关于丢番图方程的问题on Diophantine problems,that is,problems involving Diophantine equations.

Di minor guisa(关于商业运算;己佚)

《几何原本》第十卷的注释(已佚)

拉丁文代表著作《珠算原理》

如您喜欢此文章请点下面分享按钮↴峰汇在线 » 斐波那契详解 第二节 斐波那契数列的发明者
上一篇:
下一篇:
分享到:更多 ()